A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity.
نویسندگان
چکیده
Colored TiO2 has attracted enormous attention due to its visible light absorption and excellent photocatalytic activity. In this report, we develop a simple and facile solid-state chemical reduction approach for a large-scale production of colored TiO2 at mild temperature (300-350 °C). The obtained sample possesses a crystalline core/amorphous shell structure (TiO2@TiO2-x). The oxygen vacancy results in the formation of a disordered TiO2-x shell on the surface of TiO2 nanocrystals. XPS and theoretical calculation results indicate that valence band tail and vacancy band below the conduction band minimum appear for the TiO2-x, which implies that the TiO2@TiO2-x nanocrystal has a narrow band gap and therefore leads to a broad visible light absorption. Oxygen vacancy in a proper concentration promotes the charge separation of photogenerated carriers, which improves the photocatalytic activity of TiO2@TiO2-x nanocrystals. This facile and general method could be potentially used for large scale production of colored TiO2 with remarkable enhancement in the visible light absorption and solar-driven H2 production.
منابع مشابه
Preparation of polyacrylonitrile – titania electrospun nanofiber and its photocatalytic dye degradation ability
In this paper, polyacrylonitrile PAN - titania TiO2 electrospun nanofiber PAN/TiO2 nanofiber was prepared via a facile electrospinning method. The characteristics of the PAN/TiO2 nanofiber were investigated using SEM and FTIR. The nanofiber showed retained nanofiber structures and high photocatalytic efficiency under UV light for the degradation of Direct Red 80 DR80 and Direct Red 23 DR23 in w...
متن کاملQuick and Facile Preparation of Visible light-Driven TiO2 Photocatalyst with High Absorption and Photocatalytic Activity
Self-doping TiO2 has recently attracted considerable attention for its high photocatalytic activity under visible-light irradiation. However, the literature reported synthetic methods until now were very time-consuming. In this study, we establish a quick and facile method for obtaining self-doping TiO2 with the use of directly treated commercial P25 at a desired temperature for only 5 min thro...
متن کاملA visible light driven doped TiO2 nanophotocatalyst: Preparation and characterization
A useful nanophotocatalyst (La,S-TiO2) was prepared by a sol-gel method and characterized by UV–vis diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), photoluminescence emission spectroscopy (PL) and scanning electron microscopy (FESEM). The results showed that the La,S-TiO2, which calcined at 550 °C, contained only anatase phaseand its crystal size was 23 nm...
متن کاملA visible light driven doped TiO2 nanophotocatalyst: Preparation and characterization
A useful nanophotocatalyst (La,S-TiO2) was prepared by a sol-gel method and characterized by UV–vis diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), photoluminescence emission spectroscopy (PL) and scanning electron microscopy (FESEM). The results showed that the La,S-TiO2, which calcined at 550 °C, contained only anatase phaseand its crystal size was 23 nm...
متن کاملGraphene oxide supported titanium dioxide & ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation
A facile, robust approach to the synthesis of Fe3O4/rGO/TiO2 nanocomposites is described. The synthesis involves two major steps: (1) preparation of Fe3O4/GO by an electrostatic self-assembly method; (2) deposition of TiO2 on the surface of the Fe3O4/rGO nanocomposite via a hydrothermal method. The asprepared Fe3O4/rGO/TiO2 photocatalyst exhibited an enhanced photocatalytic activity for the deg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 17 شماره
صفحات -
تاریخ انتشار 2014